0

No products in the cart.

No products in the cart.

Year: 2018

05

Sep

Carbon Fiber. Where it all started

The First Carbon Fibers

The synthetic carbon industry had its official beginning in 1886 with the creation of the National Carbon Company. Based in Cleveland, Ohio, the company would eventually merge with Union Carbide in 1917 to form Union Carbide & Carbon Corp., which changed its name to Union Carbide Corp. in 1957. The carbon products division of Union Carbide Corp. became the independent UCAR Carbon Company in 1995, and was renamed GrafTech International Holdings in 2002.

Electricity was mostly a lab curiosity until the late 1800s, when carbon arc lamps began lighting the streets of major U.S. cities. The lamps were composed of two carbon rods connected to a current source and separated by a short distance. A blazing hot path of charged particles—the “arc”—formed between the two rods, giving off an intense light. National Carbon got its start by producing carbon electrodes for streetlamps in downtown Cleveland.

In 1879, Thomas Edison invented the first incandescent light bulb, which uses electricity to heat a thin strip of material, called a filament, until it glows. He may also have created the first commercial carbon fiber. To make his early filaments, Edison formed cotton threads or bamboo slivers into the proper size and shape and then baked them at high temperatures. Cotton and bamboo consist mostly of cellulose, a natural linear polymer made of repeating units of glucose. When heated, the filament was “carbonized,” becoming a true carbon copy of the starting material—an all-carbon fiber with the same exact shape. Tungsten wire soon displaced these carbon filaments, but they were still used on U.S. Navy ships as late as 1960 because they withstood ship vibrations better than tungsten.

Near the end of World War II, Union Carbide began investigating a replacement for tungsten wire in vacuum tubes by carbonizing rayon, another cellulose-based polymer (like cotton) that became popular in clothing. The end of the war brought an end to the government’s funding for this project, but carbon fibers were still raising interest in the commercial sector. Barnebey-Cheney Company, in 1957, briefly manufactured carbon fiber mats and tows (rope-like threads without the twists) from rayon and cotton. These were used as high temperature insulation and filters for corrosive compounds. A year later, Union Carbide developed a carbonized rayon cloth and submitted it to the U.S. Air Force as a replacement for fiberglass in rocket nozzle exit cones and re-entry heat shields.

While finding a certain degree of success in their respective niches, all of these early carbon fiber materials had poor mechanical properties, making them unsuitable for structural use. It took a chance discovery to set the age of high performance carbon fibers in motion.

Early Applications of Carbon Fibers

As early as 1959 scientists at Parma had taken a step toward producing high performance carbon fibers. Curry Ford and Charles Mitchell patented a process for making fibers and cloths by heat-treating rayon to high temperatures, up to 3,000 °C. They had produced the strongest commercial carbon fibers to date, which led to the entry of carbon fibers into the “advanced composites” industry in 1963.

Composites are reinforced materials consisting of more than one component. The industry had been dominated by fiberglass and boron fibers, which were extremely popular in the late 1950s and early 1960s. Boron fibers, which contained a tungsten core, were especially strong and stiff, but they were also expensive and heavy. Carbon fibers were much lighter, so the appearance of relatively affordable carbon composites was a welcome development, and they found widespread use in gaskets and packaging materials.

While the tensile strength of these materials was increasing, all commercial carbon fibers to this point were still of relatively low modulus. The first truly high modulus commercial carbon fibers were invented in 1964, when Bacon and Wesley Schalamon made fibers from rayon using a new “hot-stretching” process. They stretched the carbon yarn at high temperatures (more than 2800° C), orienting the graphite layers to lie nearly parallel with the fiber axis. The key was to stretch the fiber during heat up, rather than after it had already reached high temperature. The process resulted in a ten-fold increase in Young’s modulus—a major step on the way to duplicating the properties of Bacon’s graphite whiskers.

Union Carbide developed a series of high modulus yarns based on the hot-stretching process, beginning in late 1965 with “Thornel 25.” The trade name was derived from Thor, the Norse god for strength, and the Young’s modulus of the fibers—25 million pounds per square inch (psi),  to about 172 GPa. The Thornel line continued with increasingly higher levelswhich is equivalent of modulus for more than ten years.

The U.S. Air Force Materials Laboratory supported much of Union Carbide’s research into rayon-based fibers during this period in an attempt to develop a new generation of stiff, high strength composites for rocket nozzles, missile nose tips and aircraft structures. The fibers were also used in spacecraft heat shields to reinforce phenolic resin—plastics that solidify upon heating and cannot be re-melted. As a missile or rocket returns to the atmosphere, the phenolic resin decomposes slowly while absorbing the heat energy, allowing it to survive the trip through the atmosphere without destroying itself. Carbon fibers kept the phenolic resins intact and they have been an important ingredient in aerospace materials ever since.

Polyacrylonitrile (PAN)-based Carbon Fibers

While researchers in the United States were reveling in rayon, scientists overseas were busy creating their own carbon fiber industries based on polyacrylonitrile, or PAN, which had been passed over by U.S. producers after unsuccessful attempts at making high modulus fibers.

A quiet study by Japanese researchers in 1961—largely unknown to Western scientists—demonstrated high strength and high modulus fibers from PAN precursors. Akio Shindo of the Government Industrial Research Institute in Osaka, Japan, made fibers in the lab with a modulus of more than 140 GPa, about three times that of rayon-based fibers at the time. Shindo’s process was quickly taken up by other Japanese researchers, leading to pilot-scale production in 1964. In that same year, just a few months before Bacon and Schalamon debuted their hot-stretching method, William Watt of the Royal Aircraft Establishment in England invented a still higher-modulus fiber from PAN. The British fibers were rapidly put into commercial production.

The secret behind these developments was better precursors. In both Japan and England, researchers had access to pure PAN, with a polymeric backbone that provided an excellent yield after processing. The continuous string of carbon and nitrogen atoms led to highly oriented graphitic-like layers, eliminating the need for hot stretching. Chemical manufacturers in the United States, however, generally inserted other compounds in the polymer backbone that could account for up to 20 percent of the product, making them totally unsuitable for carbonizing.

The Japanese eventually took the lead in manufacturing PAN-based carbon fibers, effectively beating the British at their own game. Japan’s Toray Industries developed a precursor that was far superior to anything seen before, and in 1970 they signed a joint technology agreement with Union Carbide, bringing the United States back to the forefront in carbon fiber manufacturing.

PAN-based fibers eventually supplanted most rayon-based fibers, and they still dominate the world market. In addition to high modulus fibers, British researchers in the mid-1960s also developed a low modulus fiber from PAN that had extremely high tensile strength. This product became widely popular in sporting goods such as golf clubs, tennis rackets, fishing rods and skis; it is also extensively used for military and commercial aircraft.

Carbon Fibers Today

All commercial carbon fibers produced today are based on rayon, PAN or pitch. Rayon-based fibers were the first in commercial production in 1959, and they led the way to the earliest applications, which were primarily military. PAN-based fibers have replaced rayon-based fibers in most applications, because they are superior in several respects, notably in tensile strength. Fibers from PAN fueled the explosive growth of the carbon fiber industry since 1970, and they are now used in a wide array of applications such as aircraft brakes, space structures, military and commercial planes, lithium batteries, sporting goods and structural reinforcement in construction materials. In the late 1970s, Union Carbide formed a separate division as its primary carbon fiber producer; the business has since been sold to Amoco and then to Cytec, which is among a group of major carbon fiber manufacturers that spans the globe.

Pitch-based fibers are unique in their ability to achieve ultrahigh Young’s modulus and thermal conductivity and, therefore, have found an assured place in critical military and space applications. But their high cost has kept production to a minimum; only a few Japanese companies in addition to Cytec are currently making commercial mesophase fibers. A lower modulus, non-graphitized mesophase-pitch-based fiber, which is much lower in cost, is used extensively for aircraft brakes.

The cost of making carbon fibers has been reduced drastically in the last 20 years, and researchers are bringing that cost down every day. As they do, many of the applications once considered impossible will become reality. Carbon fibers are used sparingly in automotive applications, but someday entire body panels may be made from them. All high speed aircraft have carbon fiber composites in their brakes and other critical parts, and in many aircraft they are used as the primary structures and skins for entire planes. Carbon fibers could even be used to develop earthquake-proof buildings and bridges.

14

Aug

The Carbon Fiber Gladiator Suit

The Carbon Fiber Gladiator Suit That Takes a Real Beating

 

Unified Weapons Master, a start-up company based in Australia wants to bring Gladiators back (minus the killing bit at the end) and has spent the past couple of years creating a revolutionary, new combat sport that blends cutting-edge technology with traditional martial arts to allow real, weapons-based combat.To enable these modern gladiatorial scraps, the company has created the Lorica, a suit of armour made from carbon fiber, polycarbonate materials and elastomeric foam. These materials combine to create a suit that can stand up to a real beating, allowing the wearer to absorb the impact of a weapon and escape unscathed.

 

 

Underneath the armour is a range of vibration sensors and accelerometers that detect where the fighter lands a hit on the opponent and measures the severity of the blow. The team also plans to include technology to monitor biometric data including heart-rates, oxygen saturation levels and body temperature, giving useful insights into the health of the combatants. This data will then be fed back from the suit to a special ringside computer that monitors the fighters and keeps score.

According to By @compositestoday

Buy carbon fiber, fiberglass and other composites online in Australia at Beyond Materials™

29

Jul

Volvo carbon fiber panels

Volvo to replace body parts with energized carbon fiber panels

For automobile manufacturers, the electric elephant in the room continues to be bulky and weighty battery packs. This week, Volvo unveiled an innovative potential solution to the problem that it has been working on for the past three and a half years with other European partners; replace steel body panels with carbon fiber composite panels infused with nano-batteries and super capacitors.

The conductive material used around the vehicle to charge and store energy can be recharged via the vehicle’s regenerative braking system or via the grid. When the system and motor requires a charge, the energized panels behave like any traditional battery pack and discharge accordingly. According to Volvo, the material charges and stores faster than a typical system.

Using a Volvo S80 as a test platform, the team replaced the vehicle’s trunk lid and plenum cross member over the engine bay with the new material. Volvo claims the composite trunk lid, which is stronger than the outgoing steel component, could not only power the vehicle’s 12 volt system but the weight savings alone could increase an EV’s overall range and performance as a result.

Under the hood, Volvo wanted to show that the plenum replacement bar is not only capable of replacing a 12 volt system but is also 50 percent lighter than the standard steel cross-member and torsionally stronger. The very much revolutionary concept, chock full of cost and engineering challenges, presents an interesting solution that could not only reduce overall weight but increase charge capacity relative to a vehicle’s surface area.

Volvo says energized carbon fiber body panels are not only stronger and lighter but easily replace...

When it comes to weight savings, the battery pack in Tesla’s Model S for example, not only adds significant cost but also brings with it over 1,000 lb (453 kg), making the electric argument a difficult one for many. With Volvo’s concept, that huge chunk of weight would not only be lighter under this scenario, but would be spread out evenly over a vehicle’s body. In theory, vehicle handling and performance characteristics would thus improve as a result of this revised displacement idea.

But the idea of using body panels as battery packs does come with its share of particular concerns. Lamborghini, McLaren and Pagani charge a hyper-premium for their exotics as a result of extensive carbon fiber use, so for this idea to become reality and make it to mass production would require a significant reduction in the cost of carbon fiber.

Capacitor infused carbon fiber crossmember in place on Volvo S80 test vehicle

Then there’s the issue of broken panels or those damaged in an accident. In the event of an accident not only would body panels be extremely costly to replace but they could present unprecedented problems for emergency crews. Electrical surges coming from broken body panels could be potentially harmful were rescue persons unaware of the underlying electrical issues.

On a fossil fuel-powered note, cars using traditional 12 volt batteries, which weigh anywhere from 45 – 61 lb (20-28 kg), this technology could also prove beneficial by relocating that hefty chunk of lead from the nose of the car out across larger surface areas.

According to Volvo, weight savings of 15 percent or more could be achieved by replacing a vehicle’s traditional body and relevant electrical components with these new nano-infused carbon fiber panels. Volvo is also keen to point out the positive sustainability aspect that comes as a result of such weight reduction.

Source: Volvo

20

Jul

Carbon Fiber Fins

Enter The Future Of Lightweight Diving With Carbon Fiber Fins

Carbon fiber fins are not exactly new but until now they’ve mostly been limited to freediving fin styles. But in November 2017 at DEMA Submatix US was showing off one of the first ‘normal’ SCUBA diving fins made from carbon fiber we’ve seen to date.

The idea of using carbon fiber to build dive fins might seem gimmicky at first, but there’s some a great reason that most carbon fiber fins have been developed for freediving. Carbon fiber is legendary for its strength and power return so it was only a matter of time until we saw this futuristic material applied to dive fins for general SCUBA diving.

 

Not only are these fins incredibly light, they are great at transferring power from your leg kick to the water. Each Submatix fin weighs in at nearly half the weight of typical fins tipping the scales at just over 450 grams each, and a reasonable 24 inches or 60 centimeters long.

Of course carbon fiber isn’t cheap so you’re looking at a price of around $399 per pair for the privilege. While the price may be hefty, when you hold them in your hands you realize how much weight you can shave from your dive bag with a pair of these carbon fiber dive fins, and the reduced weight underwater doesn’t hurt either. (Submatix)

20

Jun

BMW Unveils Exclusive HP4 RACE Motorcycle made with Carbon Fiber

At this year’s Milan Motorcycle Show, BMW Motorrad unveiled an “advanced prototype” of its BMW HP4 RACE, which the company is calling its most exclusive motorcycle ever. Like many BMW vehicles, it features a significant amount of carbon fiber. The 2017 HP4 RACE is the latest version of the HP4 that debuted in 2013 with one of the first semi-active suspension systems on the market.

The HP4 Race will join Ducati’s Superleggera as the only bikes on the market with full featherweight carbon fiber frames. For the HP4 RACE, the use of composites will extend beyond just the frame.

“The HP4 RACE will feature the full carbon fiber main frame and carbon fiber rims,” said Stephan Schaller, President of BMW Motorrad. “We will reveal more about this model next spring.”

According to sportrider.com, the carbon fiber main frame, self-supporting tail section, and wheels, as well as the bodywork, were likely made in-house by BMW at one of its three manufacturing plants in Landshut, Leipzig, and Dingolfing, Germany. The site adds that BMW was one of the first auto manufacturers to make a significant investment into its own carbon fiber manufacturing capabilities, instead of outsourcing the manufacturing components like most other automakers.

The motorcycle will be manufactured by hand in an exclusive limited series and supplied in the second half of 2017.

 

Buy carbon fiber, fiberglass and other composites online in Australia at Beyond Materials™

According to  http://compositesmanufacturingmagazine.com

20

Jun

Zoltek Carbon Fiber Featured in New Uniti Electric Car

Swedish startup company Uniti recently released its “smartphone car,” a modern electric vehicle that comes with five years of free electricity. The car can cover 186 miles with its 22 kWh battery and charge up to a range of 124 miles in 30 minutes.

According to Lewis Horne, founder and CEO of Uniti, the car’s body is made entirely of Zoltek’s PX35 carbon fiber in order to facilitate the company’s ability to scale up production. Zoltek, a subsidiary of Toray, has the largest global capacity of industrial-grade carbon fiber which can support automotive mass production. Additionally, by utilizing PX35, Uniti was able to create an electric car that is lightweight without sacrificing safety or comfort.

“Uniti is pioneering a new space in the electric vehicle market,” said David Purcell, Executive Vice President of Composite Intermediates and Oxidized Fiber at Zoltek. “We are pleased to support the efforts of this innovative team, and even more pleased that Uniti recognizes Zoltek’s PX35 as a key enabling material on their initial vehicle.”

According to Zoltek, PX35 carbon fiber has superior mechanical properties that are comparable to steel with just 25 percent of the density of steel at a price point competitive with aluminum. In addition to the automotive market, Zoltek is also currently supplying PX35 carbon fiber into wind energy applications.

Uniti will offer a line of two, four and five-seat vehicle models, with first deliveries targeted for 2019. There are already over 1,000 advance orders for the start-up company’s first vehicle. For more information, visit www.uniti.earth.

 

Buy carbon fiber, fiberglass and other composites online in Australia at Beyond Materials

 

According to  http://compositesmanufacturingmagazine.com

20

Jun

PolyOne Develops Carbon Fiber Underbody Brace for C7 Corvette

PolyOne announced its lightweight, carbon fiber-reinforced polymer (CFRP) underbody brace is now offered as a performance upgrade for the current C7 generation of GM’s Chevrolet Corvette Z06. The Corvette Z06 won last year’s Car and Driver Lightning Lap with the fastest speed, which also ranked as the second fastest lap time in the history of the event.

 

 

The company produced the continuous carbon fiber braces using pultrusion technology. PolyOne says the braces reduce weight compared to aluminum. The braces also increasing flexural stiffness for improved structural integrity and long-term fatigue strength.

“Our Glasforms team evaluated several composite types and identified a solution with optimal performance. The carbon fiber-reinforced composite part is 17% lighter than the stock aluminum part, and the composite held up well in GM’s extensive vibration, shake and road test regimen,” said Matthew Borowiec, general manager, PolyOne Advanced Composites – the company’s new platform it created after it acquired Gordon Composites and Polystrand. “We are proud that our team’s expertise in materials and engineering is helping to boost the legendary performance of the Corvette.”

General Motors uses the Corvette as a validation vehicle for many of its new technologies. GM has a 60-year history with composites. In 1953, Molded Fiber Glass launched the first production model of the Corvette with fiberglass body panels. In 1972, the Corvette’s body panels were made with sheet molding compounds (SMC) for the first time. All Corvettes since 1973 have used SMC body panels. As recently as last year, Continental Structural Plastics introduced its TCA Ultra Lite body panel for the Corvette.

Buy carbon fiber, fiberglass and other composites online in Australia at Beyond Materials

According to  http://compositesmanufacturingmagazine.com

19

Jun

SpaceX Successfully Tests Carbon Fiber Tank for Mars Spaceship

SpaceX has completed a critical test for the carbon fiber fuel tank of its Interplanetary Transport System spaceship, which is designed to transport humans to Mars. Last month, during an “Ask Me Anything” session on Reddit, SpaceX CEO Elon Musk said he believes the carbon fiber tank is the most essential part of the spaceship.

The tank is 12 meters (~39 feet) wide, the largest such vessel ever produced. According to Space.com, SpaceX tested the tank by taking it out to sea to see how it performs under pressure. SpaceX wrote on Twitter that the tank reached both of its pressure targets and that the next step will be full cryogenic testing.

In the Reddit discussion, Musk revealed the tank would be “built with [the] latest and greatest carbon fiber prepreg” – carbon fiber that’s pre-impregnated with a resin to make it tougher. “In theory, it should hold cryogenic propellant without leaking and without a sealing linker,” he said. Carbon fiber’s high tensile strength, design flexibility and low density are also major benefits.

Musk was also quick to note, though, that working with carbon fiber wouldn’t come without its challenges.

“Even though carbon fiber has [an] incredible strength-to-weight [ratio], when you want one of them put super-cold liquid oxygen and liquid methane — particularly liquid oxygen — in the tank, it’s subject to cracking and leaking and it’s a very difficult thing to make,” Musk explains. He adds that the sheer scale of it is also challenging.

However, despite potential obstacles, he did note that “early tests are promising” and that “initial tests with the cryogenic propellant … actually look quite positive.”

“We have not seen any leaks or major issues,” he added.

Buy carbon fiber and other composites online in Australia at Beyond Materials

 

 compositesmanufacturingmagazine

X